We define the hedging portfolio \( \Pi \) as:
\( \Pi = V(S, t) - \Delta S \) (equation 1)
Where \( V(S, t) \) is the value of the call option as a function of the stock price \( S \) and time \( t \), and \( \Delta \) is the number of shares held in the portfolio.
The instantaneous change in the portfolio value is given by:
\( d\Pi = dV - \Delta dS \) (equation 2)
The stock price follows a stochastic process described by:
\( dS = \mu S dt + \sigma S dW \) (equation 3)
Using Itô's Lemma , the differential of the option value \( V \) is given by:
\( dV = \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial S} dS + \frac{1}{2} \frac{\partial^2 V}{\partial S^2} (dS)^2 \) (equation 4)
Substituting \( dS \) from equation (3) into \( (dS)^2 \), we find:
\( (dS)^2 = (\mu S dt + \sigma S dW)^2 \)
Simplifying using stochastic calculus rules :
Thus, the result is:
\( (dS)^2 = \sigma^2 S^2 dt \) (equation 5)
Using equation (5), the differential of \( V \) becomes:
\( dV = \frac{\partial V}{\partial t} dt + \frac{\partial V}{\partial S} dS + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} dt \) (equation 6)
Substituting \( dV \) from equation (6) into equation (2), we have:
\( d\Pi = \left( \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} \right) dt + \left( \frac{\partial V}{\partial S} - \Delta \right) dS \)
Setting \( \Delta = \frac{\partial V}{\partial S} \) ensures that the stochastic term \( \left( \frac{\partial V}{\partial S} - \Delta \right) dS \) vanishes, leaving:
\( d\Pi = \left( \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} \right) dt \) (equation 7)
Since the portfolio is risk-free, its change must equal the risk-free rate:
\( d\Pi = r \Pi dt \)
Substituting \( \Pi = V - \Delta S \) and \( \Delta = \frac{\partial V}{\partial S} \):
\( \frac{\partial V}{\partial t} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} = r V - r S \frac{\partial V}{\partial S} \)
Rearranging terms, we obtain the Black-Scholes PDE:
\( \frac{\partial V}{\partial t} + r S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} - r V = 0 \)
In this equation, we identify key terms:
Discover the essential concepts of quantitative finance, explore applied mathematical models, and learn how to use them for risk management and asset valuation.
Écrire commentaire