The Black-Scholes model is key in options trading, calculating European option prices with assumptions like log-normal stock prices and constant volatility. It excludes dividends and leverages stochastic calculus, impacting theoretical and practical finance. The model's formula involves stock and strike prices, time to expiration, and risk-free interest rates, integrating volatility into option pricing. This framework is crucial for understanding option pricing and risk management in finance.
Richardson extrapolation refines the accuracy of exotic option pricing in financial modeling. It adjusts for errors from numerical methods by using varied step sizes, leveraging the principle that error decreases quadratically with smaller steps, yielding more precise pricing estimates.
The Chaos Theory simply explained
Chaos theory is a field of study in mathematics that deals with systems that appear to be disordered, but are actually following deterministic rules that are highly sensitive to initial conditions. This sensitivity causes the system to appear random and unpredictable. One of the simplest mathematical models to demonstrate chaos is the logistic map. This is a recurrence relation which is used to model population growth and is given by: x(n+1) = r * x(n) * (1 - x(n)) Here, x(n) is the proportion...

Fractals simply explained
IV. Advanced Concepts and Theories · 06. novembre 2023
Benoit Mandelbrot revolutionized finance with his fractal geometry insights, revealing that market prices are rough and self-similar across time scales, not smooth as traditional models suggest. His work, inspired by Hurst's Nile studies, shows markets exhibit 'wild randomness' with frequent large swings. Mandelbrot's methods, using the Hurst exponent, offer a new model for capturing the actual volatility and trends in financial markets. #Mandelbrot #Fractals #Finance #MarketVolatility

The Kalman Filter simply explained
IV. Advanced Concepts and Theories · 01. novembre 2023
The Kalman filter refines estimates of financial states like stock prices from noisy data, crucial for asset tracking and trend analysis. It uses initial guesses and uncertainty measures, adjusting predictions with observed data over time. Kalman Gain balances predictions with actual trends for optimal estimation.

The SABR (Stochastic-Alpha-Beta-Rho) model simply explained
The SABR model, introduced in 2002, has become a core stochastic volatility tool in quantitative finance, aiding in options pricing and risk management by capturing the dynamics of underlying asset volatility. It calculates implied volatility through calibration to market data, using key parameters to reflect asset price movements and their relation to volatility changes. #SABRModel #VolatilityModeling #OptionsPricing #RiskManagement

Determinism and Randomness simply explained
Quantitative finance faces a paradox: static financial models like GBM vs. dynamic market changes. Traditional models, with fixed parameters, struggle against market unpredictability influenced by global events. Emerging AI and machine learning technologies promise more adaptive models, aligning with market fluidity and redefining finance.

The Fourier Transform simply explained
The Fourier Transform is a tool that transforms complex stock price movements into simpler, frequency-based components. In a mathematical context, this transformation is executed through a specified formula that facilitates a detailed analysis of the stock price movements at various frequency levels. The mathematical foundation of this process lies in the formula F(w) = ∫_(-∞)^(∞) f(x) * e^(-jwx) dx. Here, f(x) represents the time-domain data of a stock’s price, and F(w) gives its...

Quantitative finance relies on rules from stochastic calculus, like dW^2=dt, highlighting Brownian motion's unpredictability, and Zero Rules, underscoring infinitesimal term behaviors, crucial in financial modeling and risk management. #Finance #RiskManagement
Explore the term 'almost surely' in stochastic calculus, a concept denoting events that are virtually certain, accounting for inherent randomness. It ensures mathematical consistency in modeling complex, unpredictable systems. Key in theorems and models, it navigates the fine line between certainty and infinite possibilities.

Afficher plus


Organisme de Formation Enregistré sous le Numéro 24280185328 

Contact : Florian CAMPUZAN Téléphone : 0680319332 

E-mail :

© 2024 FINANCE TUTORING, Tous Droits Réservés